Splitting the concordance group of algebraically slice knots
نویسندگان
چکیده
منابع مشابه
Splitting the Concordance Group of Algebraically Slice Knots
As a corollary of work of Ozsváth and Szabó, it is shown that the classical concordance group of algebraically slice knots has an infinite cyclic summand and in particular is not a divisible group. Let A denote the concordance group of algebraically slice knots, the kernel of Levine’s homomorphism φ : C → G, where C is the classical knot concordance group and G is Levine’s algebraic concordance...
متن کاملOrder 2 Algebraically Slice Knots
The concordance group of algebraically slice knots is the subgroup of the classical knot concordance group formed by algebraically slice knots. Results of Casson and Gordon and of Jiang showed that this group contains in infinitely generated free (abelian) subgroup. Here it is shown that the concordance group of algebraically slice knots also contain elements of finite order; in fact it contain...
متن کاملThe Structure of the Rational Concordance Group of Knots
We study the group of rational concordance classes of codimension two knots in rational homology spheres. We give a full calculation of its algebraic theory by developing a complete set of new invariants. For computation, we relate these invariants with limiting behaviour of the Artin reciprocity over an infinite tower of number fields and analyze it using tools from algebraic number theory. In...
متن کاملThe Concordance Genus of Knots
In knot concordance three genera arise naturally, g(K), g4(K), and gc(K): these are the classical genus, the 4–ball genus, and the concordance genus, defined to be the minimum genus among all knots concordant to K. Clearly 0 ≤ g4(K) ≤ gc(K) ≤ g(K). Casson and Nakanishi gave examples to show that g4(K) need not equal gc(K). We begin by reviewing and extending their results. For knots representin...
متن کاملNew topologically slice knots
In the early 1980’s Mike Freedman showed that all knots with trivial Alexander polynomial are topologically slice (with fundamental group Z). This paper contains the first new examples of topologically slice knots. In fact, we give a sufficient homological condition under which a knot is slice with fundamental group Z ⋉ Z[1/2]. These two fundamental groups are known to be the only solvable ribb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2003
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2003.7.641